Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8028, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580811

RESUMEN

Agroforestry is a management strategy for mitigating the negative impacts of climate and adapting to sustainable farming systems. The successful implementation of agroforestry strategies requires that climate risks are appropriately assessed. The spatial scale, a critical determinant influencing climate impact assessments and, subsequently, agroforestry strategies, has been an overlooked dimension in the literature. In this study, climate risk impacts on robusta coffee production were investigated at different spatial scales in coffee-based agroforestry systems across India. Data from 314 coffee farms distributed across the districts of Chikmagalur and Coorg (Karnataka state) and Wayanad (Kerala state) were collected during the 2015/2016 to 2017/2018 coffee seasons and were used to quantify the key climate drivers of coffee yield. Projected climate data for two scenarios of change in global climate corresponding to (1) current baseline conditions (1985-2015) and (2) global mean temperatures 2 °C above preindustrial levels were then used to assess impacts on robusta coffee yield. Results indicated that at the district scale rainfall variability predominantly constrained coffee productivity, while at a broader regional scale, maximum temperature was the most important factor. Under a 2 °C global warming scenario relative to the baseline (1985-2015) climatic conditions, the changes in coffee yield exhibited spatial-scale dependent disparities. Whilst modest increases in yield (up to 5%) were projected from district-scale models, at the regional scale, reductions in coffee yield by 10-20% on average were found. These divergent impacts of climate risks underscore the imperative for coffee-based agroforestry systems to develop strategies that operate effectively at various scales to ensure better resilience to the changing climate.


Asunto(s)
Coffea , Café , India , Agricultura , Granjas , Cambio Climático
2.
Plants (Basel) ; 13(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38498452

RESUMEN

In this study, an extensive exploration survey of wild progeny was conducted which yielded 18 candidate plus trees (CPTs) of Terminalia bellerica. Seeds of these CPTs were collected from diverse locations between 10°54' and 28°07' E longitude, and 76°27' and 95°32' N latitude, covering 18 different locations across 5 states of the Indian subcontinent. The objective of the progeny trial was to assess genetic associations and variability in growth and physio-chemical characteristics. Significant variations (p < 0.05) were observed among the growth traits, encompassing plant height, basal diameter, girth at breast height and volume, as well as physio-chemical characteristics such as leaf length, width, area and chlorophyll content, carotenoids, and protein in the progeny trial. Broad-sense heritability (h2b) estimates were consistently high, exceeding 80% for all growth and physiological related traits under investigation except for plant height, leaf length, and girth at breast height. A correlation study revealed that selecting based on plant height, leaf area, and girth at breast height effectively enhances T. bellerica volume. A moderate genetic advance in percent of the mean (GAM) was observed for most traits, except leaf length, leaf width, girth at breast height, and plant height. Across all 13 traits, phenotypic coefficient of variation (PCV) surpassed genotypic coefficient of variation (GCV). Utilizing principal component analysis (PCA) and dendrogram construction categorized the genotypes into seven distinct groups. In conclusion, the study has demonstrated that targeting girth at breast height and plant height would be a highly effective strategy for the establishment of elite seedling nurseries and clonal seed nurseries for varietal and hybridization programs in the future.

3.
3 Biotech ; 13(11): 370, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37849767

RESUMEN

The Fall armyworm, Spodoptera frugiperda, is a globally important invasive pest, primarily on corn, causing severe yield loss. Overuse of synthetic chemicals has caused significant ecological harm, and in many instances control has failed. Therefore, developing efficient, environmentally friendly substitutes for sustainable management of this pest is of high priority. CRISPR/Cas9-mediated gene editing causes site-specific mutations that typically result in loss-of-function of the target gene. In this regard, identifying key genes that govern the reproduction of S. frugiperda and finding ways to introduce mutations in the key genes is very important for successfully managing this pest. In this study, the pheromone biosynthesis activator neuropeptide (PBAN) gene of S. frugiperda was cloned and tested for its function via a loss-of-function approach using CRISPR/Cas9. Ribonucleoprotein (RNP) complex (single guide RNA (sgRNA) targeting the PBAN gene + Cas9 protein) was validated through in vitro restriction assay followed by embryonic microinjection into the G0 stage for in vivo editing of the target gene. Specific suppression of PBAN by CRISPR/Cas9 in females significantly affected mating. Mating studies between wild males and mutant females resulted in no fecundity. This was in contrast to when mutant males were crossed with wild females, which resulted in reduced fecundity. These results suggest that mating disruption is more robust where PBAN is edited in females. The behavioural bioassay using an olfactometer revealed that mutant females were less attractive to wild males compared to wild females. This study is the first of its kind, supporting CRISPR/Cas9 mediating editing of the PBAN gene disrupting mating in S. frugiperda. Understanding the potential use of these molecular techniques may help develop novel management strategies that target other key functional genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03798-3.

4.
Front Nutr ; 10: 1254624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841397

RESUMEN

Traditional rice is gaining popularity worldwide due to its high nutritional and pharmaceutical value, as well as its high resistance to abiotic and biotic stresses. This has attracted significant attention from breeders, nutritionists, and plant protection scientists in recent years. Hence, it is critical to investigate the grain metabolome to reveal germination and nutritional importance. This research aimed to explore non-targeted metabolites of five traditional rice varieties, viz., Chinnar, Chithiraikar, Karunguruvai, Kichili samba, and Thooyamalli, for their nutritional and therapeutic properties. Approximately 149 metabolites were identified using the National Institute of Standards and Technology (NIST) library and Human Metabolome Database (HMDB) and were grouped into 34 chemical classes. Major classes include fatty acids (31.1-56.3%), steroids and their derivatives (1.80-22.4%), dihydrofurans (8.98-11.6%), prenol lipids (0.66-4.44%), organooxygen compounds (0.12-6.45%), benzene and substituted derivatives (0.53-3.73%), glycerolipids (0.36-2.28%), and hydroxy acids and derivatives (0.03-2.70%). Significant variations in metabolite composition among the rice varieties were also observed through the combination of univariate and multivariate statistical analyses. Principal component analysis (PCA) reduced the dimensionality of 149 metabolites into five principle components (PCs), which explained 96% of the total variance. Two clusters were revealed by hierarchical cluster analysis, indicating the distinctiveness of the traditional varieties. Additionally, a partial least squares-discriminant analysis (PLS-DA) found 17 variables important in the projection (VIP) scores of metabolites. The findings of this study reveal the biochemical intricate and distinctive metabolomes of the traditional therapeutic rice varieties. This will serve as the foundation for future research on developing new rice varieties with traditional rice grain metabolisms to increase grain quality and production with various nutritional and therapeutic benefits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...